

ECODESIGN BATTERIES – FIRST STAKEHOLDER MEETING DRAFT TASK 5

Paul Van Tichelen, Karolien Peeters, Wai Chung Lam

AGENDA

- 1. Introduction on the used Life Cycle Assessment (LCA) method
 - Short presentation on the MEErP EcoReport 2014 tool
- 2. Selected Base Cases (BCs) and Functional Unit (FU)
 - Overview of the seven base cases
 - The applied FU
- 3. First draft results BC1 environmental impact assessment
 - Used parameters for first draft results BC1
 - LCA results based on EcoReport tool
 - Critical Raw Materials based on EcoReport tool
- 4. First draft results of BC1 financial impact assessment
 - Used parameters for first draft results BC1
 - Life Cycle Costs (LCC) and Levelized Cost of Energy (LCOE) results
- 5. Comparison with the Product Environmental Footprint (PEF) pilot

Ecodesign Batteries First Stakeholder Meeting 20.12.2018

ECODESIGN BATTERIES – FIRST STAKEHOLDER MEETING TASK 5 - 1. USED LCA METHOD

Wai Chung Lam

INTRODUCTION ON THE USED LCA METHOD 1.

MEErP: Methodology for Ecodesign of Energy-related Products

- MEErP shall be used as basis for ecodesign and energy labelling preparatory studies
- EcoReport tool developed for MEErP assessments
 - Latest version from 2014
- Translates product-specific characteristics (from Task 1-4) into environmental impact indicators per product
- Excel-based tool
- LCC assessments also possible
 - Not used given the complexity of the LCC and LCOE calculation

1. INTRODUCTION ON THE USED LCA METHOD

MEErP EcoReport tool 2014

- Life cycle impact assessment data of 91 materials included
 - 7 material categories:
 - Bulk plastics
 - Technical plastics
 - Ferrous metals
 - Non-ferrous metals
 - Electronics
 - Miscellaneous
- 20 extra materials can be added by the user

ste	Copy		- 8-1	A - = =	= =] €	≥≣ ∰1	' Vierge & Ce	enter - I	m • % •	0.0 0.0 0.0 0.0	Conditio	nal Format	t as Cell	Insert	Delete For	mat 🥒 F	ill - Tear -	Sort & Fir	nd &
Clip	oboard	5 Font				Alignment			Numbe	er 5		ng - Table Styles			Cells		Edit	Filter - Sel ing	ect +
1		\bullet : $\times \checkmark f_x$																	
AB	с	D	E	F	G	н	1	. J.	К	L.	м	N	0	Р	Q	R	S	т	U
	nr	Name material	Recycle %*	Energy	energy	feedstock	water proces	Water cool	waste haz	waste non	GWP	AD	voc	POP	Hma	РАН	РМ	HMw	EUP
	unit	New Materials production phase (category 'Extra')	%	мј	м	мј	L	L	g	g	kg CO2 eq.	g SO2 eq.	mg	ng i-Teq	mg Ni eq.	mg Ni eq	g	mg Hg/20	mg PO4
	100	Office paper (from recycled paper)	15,14	3,81		20,46				0,93	2,57					2,45		0,
	101	Office paper (from primary cellulo	se)	39,71	1,80		52,23		0,00	0,02	1,20	9,09					8,45		0,
	102																		
	103																		
	104																		
	106																		
	107																		
	108																		
	109																		
	110																		
	111																		+
	112																		
	114																		
	115														+				
	116																		
	117			1															
	118																		
	119																		
	120	New Metericle																	
		(category 'Auxiliaries')																	
	121																		
	122																		
	123																		
	125														+				
														1		1	1	1	1

Ecodesign Batteries First Stakeholder Meeting 20.12.2018

5

viegand maagøe energy people

1. INTRODUCTION ON THE USED LCA METHOD

MEErP EcoReport tool 2014

- Results are given for:
 - Raw materials
 - Manufacturing
 - Total production phase
- Use phase
- End-of-life disposal
- End-of-life reuse and recycling

Distribution

- Total life cycle
- Results for 13 environmental impact categories
 - Greenhouse Gases in GWP100 [kg CO₂ eq.]
 - Particulate Matter (PM, dust) [g]
 - Acidification, emissions [g SO₂ eq.]
 - Eutrophication (water) [g PO₄]
 - Process water and cooling water [ltr]
 - Total energy [MJ]
 - Waste, non-haz./ landfill [g]
 - Waste, hazardous/ incinerated [g]
 - Volatile Organic Compounds to air [g]
 - Persistent Organic Pollutants to air [ng i-Teq]
 - Heavy metals to air [mg Ni eq.]
 - PAHs to air [mg Ni eq.]

First Stakeholder Meeting

Ecodesign Batteries

20.12.2018

Heavy metals to water [mg Hg/2O]

B C	D	E	F	G	Н	1.1	J	К	L	М	1
Life Cycle Impact (per unit) of Product	s										
Nr Life cycle Impact per produc	t:					Refe	rence year	Author			1
Products							2014	vhk. izm			
0 11044665											
					_				_	-	_
Life Cycle phases>		F	PRODUCTION		DISTRI-	USE	E	ND-OF-LIF	E	TOTAL	RBF
Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Stock		
1 Pulk Plastics	unit	r			······		0	0			+
2 TecPlastics	5		++	0	+		0	0	0	0	+
3 Ferro	g	1	++		++		0	0	0	0	+
4 Non-ferro	g		1	0	1	(0	0	0	0	1
5 Coating	g			0		(0	0	0	0	1
6 Electronics	g			0	1	(0	0	0	0	1
7 Misc.	g			0			0	0	0	0	
8 Extra	g			0		(0	0	0	0	
9 Auxiliaries	g			0			0	0	0	0	ļ
10 Refrigerant	g		+	0	++		0	0	0	0	
Total Weight	.;g	.1	.1	U	.1		U				
								ee notel			1
Other Resources & Waste							debet	credit			1
11 Total Energy (GER)	MU	0	0	0	0	(0	0		0	1
12 of which, electricity (in primary MJ)	MJ	0	0	0	0	(0	0		0	1
13 Water (process)	ltr	0	0	0	0		0	0		0	ļ
14 Water (cooling)	ltr	0	0	0	0	(0	0		0	
15 Waste, non-haz / landfill	g	0	0	0	0		0	0		0	ļ
16 Waste, hazardous/ incinerated	g	0	0	0			0	0	l	0	
Emissions (Air)											1
17 Greenhouse Gases in GWP100	ke CO2 eq.	0	0	0	0	(0	0		0	+
18 Acidification, emissions	g SO2 eq.	0	0	0	0		0 O	Ő	1	Ŏ	1
19 Volatile Organic Compounds (VOC)	E C	0	0	0	0	(0	0	1	0	1
20 Persistent Organic Pollutants (POP)	ng i-Teq	0	0	0	0	(0	0		0	1
21 Heavy Metals	mg Ni eq.	0	0	0	0	(0	0		0	1
22 PAHs	mg Ni eq.	0	0	0	0		0	0		0	ļ
23 Particulate Matter (PM, dust)	g	0	0	0	0	(0	0	l	0	ļ
Emissions (Mater)											1
Emissions (water)	ma Ha (20							0			
24 neavy metals	mg ng/20	0	0	0	0		0	0		0	
23 Europhication	8104	•	•	V	U 1		0	0			

1. INTRODUCTION ON THE USED LCA METHOD

MEErP EcoReport tool 2014

CRM calculator based on CRM-list of 2011

Ę	ם י ר ⊒	🔹 🝷 🗧 Ecodesign-EcoReport-to	ool-2014_protec	Lam Wai Chung 🗖	- 0	_/×			
F	ile Home	Insert Draw Page Layout Formul	as Data Revi	ew View Developer Ac	robat 🏼 🖉 Tell n	ne 🖻			
Pas Clip	te 💉 🕞	bri • 11 • = = = 20 I U · A A → A · ④ · A · G 3 ⊗ · · Font 5 Alignment 5	General ▼	Format as Table - Conditional Formatting Format as Table - Cell Styles - Styles	Cells Edition	ng			
E1	17 • : $\times \checkmark f_x$								
	А	В	с	D	E	F			
1	CRM indicator a	ccording to MEErP 2011							
2		Critical Raw Material	Weight in g	Characterization factor	CRM				
2		Germanium (Ge)		[Kg 55 Eq./ Kg]					
4		Bervllium (Be)	0	12	0				
5		Tantalum (Ta)	0	9	0				
6		Indium (In)	0	g	0				
7		Platinum Group metals (PGM)	0	8	3 0				
8		Gallium (Ga)	0	8	3 0				
9		Antimony (Sb)	0	1	. 0				
10		Tungsten	0	0,2	. 0				
11		Niobium (Nb)	0	0,04	• O				
12		Rare earth elements (Sc, Y, Nd)	0	0,03	; O				
13		Cobalt (Co)	0	0,02	• 0				
14		Graphite (C)	0	0,01	. 0				
15		Fluorspar (CaF2)	0	0,001	. 0				
16		Magnesium (Mg)	0	0,0005	0				
17		CRM indicator			0				
18						-			
•	▶ RE	SULTS Extra Materials RAW	EoL (+			▶			
Read	dy 🔝			Ⅲ □ □ -		+ 100%			

Ecodesign Batteries First Stakeholder Meeting 20.12.2018

7

viegand maagøe energy people

ECODESIGN BATTERIES – FIRST STAKEHOLDER MEETING TASK 5 - 2. BASE CASES AND FUNCTIONAL UNIT

Wai Chung Lam

Seven Base Cases (BCs)

- Scope (as defined in Task 1 in line with PEF):
 'High Specific Energy Rechargeable Batteries for Mobile Applications with High Capacity'
- A BC
 - Is a conscious abstraction of the reality, necessary for practical reasons
 - Represents average EU product on the market in terms of resources efficiency, emissions and functional performance
 - Is defined within Task 4
- BC1 Passenger car battery electric vehicle
- BC2 Passenger car plug-in hybrid electric vehicle
- BC3 Light commercial vehicle battery electric vehicle
- BC4 Truck battery electric vehicle
- BC5 Truck plug-in hybrid electric vehicle
- BC6 Residential storage
- BC7 Grid stabilisation/large scale ESS
- More details in Task 4 presentation
 - Ecodesign Batteries First Stakeholder Meeting 20.12.2018

2. SELECTED BASE CASES AND FUNCTIONAL UNIT

Functional Unit (FU)

- Same FU as PEF Category Rules (PEFCR)
- 1 kWh (kilowatt-hour) of the total output energy delivered over the service life by the battery system (measured in kWh).

Ecodesign Batteries First Stakeholder Meeting 20.12.2018

ECODESIGN BATTERIES – FIRST STAKEHOLDER MEETING TASK 5 – 3. FIRST DRAFT RESULTS BC1 - LCA

Wai Chung Lam

First draft Task 5 report

- Example to show:
 - How results will be processed
 - Importance of sourcing appropriate data for Task 2, 3 and 4
- Stakeholders are invited to source data for more accurate modelling for all BCs not only BC1

Ecodesign Batteries First Stakeholder Meeting 20.12.2018

Used parameters for first draft results BC1: battery components

Weight based on:

Nominal battery energy/ battery capacity:	34.375 kWh	(based on Task 4)
Economic lifetime:	10 years	(based on Task 3)
Delivered energy:	28 <i>,</i> 405 kWh	(based on Task 3)
Functional units per battery life:	8,000 kWh	(based on PEF)
Number of batteries:	4	(i.e. 3 replacements)

Results:

13

- Battery weight:
- Conversion to 1 FU:
- Total weight based on 4 batteries:

232.6 kg/battery (based on Task 4) 0.033 kg/kWh 930.5 kg

Used parameters for first draft results BC1: Bill-of-Materials (BOM) & production stage

- Materials of the cell, module, and system based on data in section 4.2.1. of Task 4 report
- Auxiliary materials and energy use during production and their related emissions based on PEFCR on rechargeable batteries

Input manufacturing	Amount per kg battery	Unit
n-Methylpyrolidone (NMP)	0.143	kg
Hydrochloric acid mix (100%)	0.37	kg
Power electrode (manufacturing energy)	40	MJ
Power cell forming (manufacturing energy)	1.2	MJ
Power battery assembly (manufacturing energy)	0.001	MJ

Stakeholders please provide us Life Cycle Inventory (LCI) data for more accurate modeling

14

🗾 Fraunhofer

ISI

vito

Used parameters for first draft results BC1: distribution stage

- EcoReport tool based on:
 - Volume of packaged product:
 - 0.4 m³ (2 m * 1 m * 0.2 m)
 - Product type and installation:
 - Not an ICT or consumer electronic product less than 15 kg
 - Is an installed appliance

Used parameters for first draft results BC1: use phase

Direct losses due to energy efficiency:	4%
Indirect losses battery charger:	5%
Brake energy recovery:	15%
Indirect losses thermal management system:	1%

- Stakeholders are invited to source data for Task 3 for more accurate modelling
- MEErP takes 1% of the raw materials use of the production as default maintenance scenario

Used parameters for first draft results BC1: end-of-life stage

- Default values EcoReport tool
 - End-of-life scenarios assigned to material categories
- 53,9% of battery weight material category 'Extra Materials'
 - Default for 'Extra Materials':
 - 60% recycling
 - 10% incineration
 - 29% landfill
 - 1% reuse
 - Stakeholder are invited to source data for Task 3 regarding recycling for a more detailed evaluation

LCA results based on EcoReport tool

	Life Cycle phases>		PF	RODUCTIO	N	DISTRI-	USE	EN	D-OF-LIF	E	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Stock	
	Materials	unit				,					
1	Bulk Plastics	g			1,28		0,01	0,71	0,58	0,00	0,00
2	TecPlastics	g			0,00		0,00	0,00	0,00	0,00	0,00
3	Ferro	g			2,50		0,03	0,13	2,40	0,00	0,00
4	Non-ferro	g			10,84		0,11	0,55	10,41	0,00	0,00
5	Coating	g			0,15		0,00	0,01	0,14	0,00	0,00
6	Electronics	g			0,34		0,00	0,17	0,18	0,00	0,00
7	Misc.	g			0,00		0,00	0,00	0,00	0,00	0,00
8	Extra	g			34,45		0,00	13,57	21,22	0,00	-0,34
9	Auxiliaries	g			0,00		0,00	0,00	0,00	0,00	0,00
10	Refrigerant	g			0,00		0,00	0,00	0,00	0,00	0,00
	Total weight	g			49,56		0,15	15,13	34,93	0,00	-0,34
	Other Resources & Waste	1				·····		debet	credit		7
11	Total Energy (GER)	MJ	5,49	3,63	9,12	0,06	0,91	0,09	-1,65		8,54
12	of which, electricity (in primary MJ)	MJ	0,53	3,50	4,03	0,00	0,86	0,00	-0,18		4,72
13	Water (process)	ltr	0,17	0,01	0,18	0,00	0,00	0,00	-0,04		0,14
14	Water (cooling)	ltr	0,34	0,22	0,56	0,00	0,04	0,00	-0,11		0,49
15	Waste, non-haz./ landfill	g	81,93	2,58	84,52	0,03	1,26	4,86	-21,48		69,19
16	Waste, hazardous/incinerated	g	1,42	0,05	1,47	0,00	0,03	0,00	-0,29		1,20
	Emissions (Air)										
17	Greenhouse Gases in GWP100	kg CO2 eq.	0,259	0,159	0,418	0,00	0,04	0,00	-0,08		0,38
18	Acidification, emissions	g SO2 eq.	6,95	0,71	7,65	0,01	0,23	0,02	-1,93		5,98
19	Volatile Organic Compounds (VOC)	g	0,12	0,08	0,20	0,00	0,02	0,00	-0,03		0,19
20	Persistent Organic Pollutants (POP)	ng i-Teq	0,22	0,02	0,24	0,00	0,00	0,00	-0,08		0,17
21	Heavy Metals	mg Ni eq.	1,86	0,06	1,92	0,00	0,03	0,01	-0,52		1,43
22	PAHs	mg Ni eq.	1,76	0,01	1,77	0,00	0,02	0,00	-0,54		1,25
23	Particulate Matter (PM, dust)	g	0,50	0,03	0,52	0,19	0,01	0,01	-0,15		0,59
	Emissions (Water)		·						·····,		ş
24	Heavy Metals	mg Hg/20	1,28	0,02	1,29	0,00	0,02	0,00	-0,39		0,92
25	Eutrophication	g PO4	0,17	0,00	0,17	0,00	0,00	0,02	-0,04		0,15

- Mistakes in first draft:
 - auxiliary material not taken into account number of batteries: effect small contribution on total production energy (15%)
 - Impact category water extra materials m³ instead of ltr: no effect on the results

18

Ecodesign Batteries First Stakeholder Meeting 20.12.2018 viegand maagøe energy people

LCA results based on EcoReport tool

Relative contribution of the life cycle stages

LCA results based on EcoReport tool

Relative contribution raw materials used in the production phase (w/o energy for manufacturing)

			water											
			(proces +	haz.	non-haz.									
	weight	GER	cooling)	waste	waste	GWP	AD	VOC	POP	HMa	PAH	РМ	HMw	EUP
Cathode active material	25%	25%	0%	0%	75%	31%	71%	41%	24%	62%	4%	43%	45%	72%
Cathode, other materials	5%	5%	0%	0%	1%	5%	1%	1%	3%	1%	5%	5%	2%	2%
Cell anode	22%	10%	0%	0%	1%	10%	10%	49%	5%	7%	51%	12%	16%	4%
Cell electrolyte	11%	5%	0%	0%	9%	6%	2%	5%	2%	5%	0%	5%	0%	8%
Cell seperator	2%	2%	3%	0%	0%	2%	0%	0%	1%	0%	2%	1%	1%	0%
Auxillary materials		15%	0%	0%	3%	5%	1%	3%	2%	6%	0%	3%	1%	6%
Cell packaging	9%	15%	57%	1%	5%	15%	6%	1%	32%	16%	11%	10%	8%	8%
Module	5%	4%	6%	0%	1%	5%	1%	0%	6%	1%	5%	6%	3%	0%
System - BMS	4%	3%	13%	39%	1%	3%	3%	0%	7%	2%	0%	1%	8%	0%
System - thermal management	4%	4%	0%	0%	1%	5%	1%	0%	4%	0%	6%	4%	3%	0%
System packaging	12%	12%	21%	59%	3%	14%	3%	0%	16%	1%	15%	10%	13%	0%

contribution to impact category	X > 50%
contribution to impact category	25% < X < 50%
contribution to impact category	10% < X < 25%
contribution to impact category	X <10%

20

Ecodesign Batteries First Stakeholder Meeting 20.12.2018

LCA results based on EcoReport tool

Relative contribution raw materials and manufacturing in production stage

		water											
		(proces +	haz.	non-haz.									
	GER	cooling)	waste	waste	GWP	AD	voc	РОР	HMa	РАН	РМ	HMw	EUP
Raw materials	60%	97%	96%	97%	62%	91%	62%	92%	97%	99%	95%	99%	99%
Manufacturing	40%	3%	4%	3%	38%	9%	38%	8%	3%	1%	5%	1%	1%

Relative contribution different life cycle stages

	GER	water (proces + cooling)	haz. waste	non-haz. waste	GWP	AD	voc	РОР	НМа	РАН	РМ	HMw	EUP
Production - raw materials	64%	123%	118%	118%	68%	116%	65%	132%	130%	141%	84%	139%	114%
Production - manufacturing	43%	4%	5%	4%	42%	12%	40%	11%	4%	1%	4%	2%	1%
Distibution	1%	0%	0%	0%	1%	0%	1%	0%	0%	0%	32%	0%	0%
Use	11%	1%	2%	2%	10%	4%	11%	2%	2%	2%	1%	2%	1%
EOL - recycling/reuse	-19%	-28%	-24%	-31%	-21%	-32%	-16%	-45%	-37%	-44%	-24%	-42%	-30%
EOL - disposal	1%	0%	0%	7%	0%	0%	0%	0%	1%	0%	2%	0%	13%

contribution to impact category	X > 50%
contribution to impact category	25% < X < 50%
contribution to impact category	10% < X < 25%
contribution to impact category	X <10%

21

Ecodesign Batteries First Stakeholder Meeting 20.12.2018

Critical Raw Materials (CRM) based on EcoReport tool

- Total battery weight per FU:
- Cobalt (CRM since 2011):

32.8 g (mistake in report: weight was for 1 battery, not 4) 0,634 g 1,9% of total battery weight CRM indictor 1.27E-05

(non-)CRM not in EcoReport tool

- Lithium (non-CRM): 0,914 g 2,8% of total battery weight CRM indictor 1.25E-04
 Natural graphite (CRM since 2014): 4,923 g 15,0% of total battery weight CRM indicator 2.62E-05
- These CRM indicators are calculated with same formula as in the MEErP dating from 2011
- However the values used to calculate the indicators, such as the EU consumption, are from 2017
- For next report version, to see whether to update al figures, including the Antimony (Sb) reference

ECODESIGN BATTERIES – FIRST STAKEHOLDER MEETING TASK 5 – 4. FIRST DRAFT RESULTS BC1 - LCC/LCOE

Paul van Tichelen

4. FIRST DRAFT RESULTS OF BC1 - FINANCIAL IMPACT ASSESSMENT

Used parameters for first draft results BC1

		Based on
Economic life time of application (Tapp) (y)	10.00	Task 3
Electricity cost (incl. VAT) (€/kWh)	0.205	EUROSTAT
r (discount rate=interest - inflation)	4.0%	MEErP
r (corrected discount rate for electricity)	0.0%	MEErP
Battery system capacity (kWh)	34.375	Task 4
Battery system cost (€/kWh)	200	Task 3/4
CAPEX battery system(€)	6875	Task 2
CAPEX for decommissioning (€)	400	Own estimate
OPEX replace battery (€/service)	400	Own estimate
Functional units for a battery system(kWh/batt life)	8000	Task 4 / PEF
Application service energy (AS) (kWh/app life)	28405	Task 3
Application service energy/year (AS/y) (kWh/app life/y)	2841	Task 3
Total number of batteries per application	4	Task 4
Frequency of replacement (y)	2.8	Task 4
ŋcoul x ŋv = energy efficiency	96%	Task 4
% of brake energy recovery	15%	Task 3
Battery charger efficiency	95%	Task 4

Ecodesign Batteries First Stakeholder Meeting 20.12.2018

25

viegand maagøe energy people

4. FIRST DRAFT RESULTS OF BC1 - FINANCIAL IMPACT ASSESSMENT

Details of LCC calculations per year

OPEX and CAPEX processing based on LCCinputdata										
event	Year	other	elec.		other	electricity	NPV	Direct loss	Indirect loss	
		PWF	PWF	CAPEX	OPEX	OPEX	OPEX+CAPEX	Elec. per year	Elec. per year	
		ratio	ratio	euro	euro	euro	euro/y	kWh	kWh	
purchase EV	1	1,000	1,000	6.875€	400,00€	48,61€	7.323,61€	113,62	123,50	
	2	0,925	1,000			48,61€	48,61€	113,62	123,50	
0&M	3	0,889	1,000	6.875€	400,00€	48,61€	6.516,06€	113,62	123,50	
	4	0,855	1,000			48,61€	48,61€	113,62	123,50	
	5	0,822	1,000			48,61€	48,61€	113,62	123,50	
0&M	6	0,790	1,000	6.875€	400,00€	48,61€	5.798,15€	113,62	123,50	
	7	0,760	1,000			48,61€	48,61€	113,62	123,50	
	8	0,731	1,000			48,61€	48,61€	113,62	123,50	
0&M	9	0,703	1,000	6.875€	400,00€	48,61€	5.159,93€	113,62	123,50	
EoL	10	0,676	1,000		400,00€	48,61€	318,84€	113,62	123,50	
Total							25.359,63€	1136,20	1235,00	

Ecodesign Batteries First Stakeholder Meeting 20.12.2018

4. FIRST DRAFT RESULTS OF BC1 - FINANCIAL IMPACT ASSESSMENT

LCC and LCOE results

- LCOE or LCC per functional unit
- LCC total for all batteries in application
- Electrical energy produced over its lifetime

0.893 EUR/kWh 25360 EUR/application 1136.20 kWh

Stakeholders are invited to source data for Task 3 for more accurate modelling

ECODESIGN BATTERIES – FIRST STAKEHOLDER MEETING TASK 5 – 5. COMPARISON WITH PEF

Wai Chung Lam

PEF Li-ion e-mobility

Just to check the order of magnitude of the results

- Only one comparable impact category with same unit: global warming [kg CO₂ eq.]
- Only production
 - Scenarios for distribution, use phase, and EOL not comparable
- Same FU: 1 kWh of the total output energy delivered over the service life by the battery system

Specifications	e-mobility Li-ion PEF	BC1 – passenger car BEV	BC1' – passenger car BEV
Battery weight [kg]	225	232.6	232.6
Number of batteries [-]	1	4	1
Total energy delivered over the lifetime [kWh]	8000	28405	8000
Conversion to unit analysis [kg/kWh]	0.028	0.033	0.029
GWP results production phase [kg CO ₂ eq./FU]	e-mobility Li-ion PEF *	BC1 – passenger car BEV	BC1 – passenger car BEV
Raw material acquisition	0.229	0.259	0.230
Manufacturing of the main product	0.133	0.159	0.141
Total production phase	0.362	0.418	0.371

* These figures are corrected compared to the ones in the draft Task 5 report

29

Ecodesign Batteries First Stakeholder Meeting 20.12.2018

THANKS FOR YOUR ATTENTION

For commenting please use form <u>https://ecodesignbatteries.eu/files/attachments/ED_Battery_commentsv2.docx</u> and e-mail it to <u>edbatteries@vito.be</u>

Deadline for sending comments on draft Task 5: 18 January 2019

³⁰ Ecodesign Batteries First Stakeholder Meeting 20.12.2018

