

ECODESIGN BATTERIES – 1. STAKEHOLDER MEETING PRESENTATION OF TASK 4

Tim Hettesheimer, Antoine Durand

December 20, 2018 – Brussels

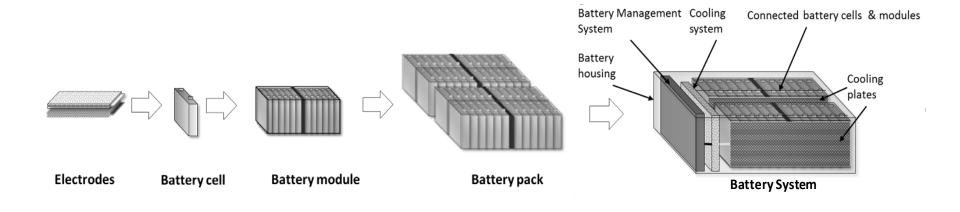
AGENDA

- Purpose of task 4
- Subtask 4.1 Technical product description
 - Description of a battery systems key components \rightarrow Input for PEF: 3.2 Representative products
 - Technical improvement: BAT and BNAT according to literature
 - Definition of design options
- Subtask 4.2 Production, distribution and end-of-life*
 - Product weight and Bills-of-Materials (BOMs) → Input for PEF: 6.1 Raw material acquisition
 - Materials flow and collection effort at end-of-life (secondary waste)
 - Second life
 - *Recycling* → Input for PEF: 6.6 End of life

*Production stage and EOL also considered in PEF (for mobile applications, also in the following), as well as Use stage (see task 3)

PURPOSE OF TASK 4- TECHNOLOGIES

- Task 4 provides a **technological description** of the products in scope of the study.
- It serves two different purposes:
 - inform the policymakers and stakeholders about the product and its components from a technical perspective,
 - it serves to define the Base Cases and also works towards the definition of Best Available
 Technologies (BAT) and state-of-the-art Best Not-yet Available Technologies (BNAT).
- While the **Base Case** represents an average product on the market today
- The Best Available Technology (BAT) represents the best commercially available product with the lowest resources use and/or emissions.
- The Best Not yet Available Technology (BNAT) represents an experimentally proven technology that is not yet brought to market, e.g. it is still at the stage of field-tests or official approval.
- The assessment of the BAT and BNAT provides the input for the identification of the improvement potentials in Task 6. The data for the base cases will serve as input for Task 5.



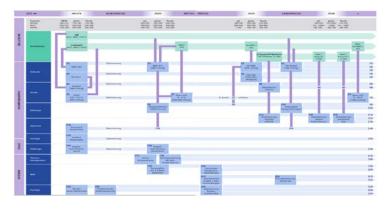
SUBTASK 4.1 - TECHNICAL PRODUCT DESCRIPTION

KEY COMPONENTS- SUBTASK 4.1 - TECHNICAL PRODUCT DESCRIPTION

Description of the key components of a battery system

 \rightarrow Input for PEF: 3.2 Representative products

5 Source: Hettesheimer 2017: Strategische Produktionsplanung in jungen Märkten. Ein systemdynamischer Ansatz zur Konzeption und dynamischen Bewertung von Produktionsstrategien am Beispiel der Lithium-Ionen-Traktionsbatterie. Stuttgart: Fraunhofer Verlag.



BAT & BNAT - SUBTASK 4.1 - TECHNICAL PRODUCT DESCRIPTION

Technical improvement: BAT and BNAT according to literature

- The procedure differs from MEErP in which sections on standard improvement, BAT and BNAT are usually described in sequence.
- BAT and BNAT by means of future development prospective of the different battery components.

Please provide further input on improvement options and if they can be considered as BAT or BNAT.

		Today (BAT)	2020 (BNAT)	Until 2025 (BNAT)	From 2025 (out of time scope)
	Nickel-rich materials				
	High-energy NMCs				
Cathode	High-voltage spinels				
	Layer thickness				
	Aqueous cathode production				
	Graphite				
Anode	Si/C composites	2–5 % SiO	Si/C >5 %		Si/C> 20 %
	Lithium metal				
	Additivation				
Electrolyte	Alternative liquid electrolytes				
	Polymer electrolyte SPE/CPE				
Separator	Stable separators				
Cell design	Stacking instead of winding				
and cell formats	Optimization of inactive materials				
- <i>u</i>	Electricity meter with 2-3 physical measuring ranges				
Battery management system	Sensorless temperature measurement				
(BMS)	Compatibility of electronics for automotive and stationary applications				
Thermal	Battery temperature control during fast charging		_		
management	Homogenization of temperature				

6 Source: Thielmann, Axel; Neef, Christoph; Hettesheimer, Tim; Döscher, Henning; Wietschel, Martin; Tübke, Jens (2017): Energiespeicher-Roadmap (Update 2017). Hochenergie-Batterien 2030+ und Perspektiven zukünftiger Batterietechnologien. Karlsruhe.

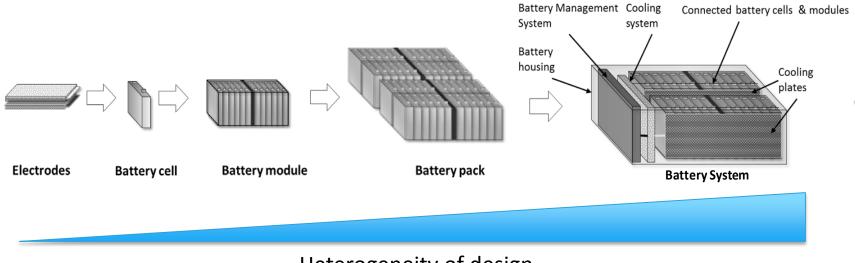
DESIGN OPTIONS - SUBTASK 4.1 - TECHNICAL PRODUCT DESCRIPTION

Definition of design options: Exemplarily for base case 1

Name	BC 1	EE	CRM	DUR	Ext	REP	EES		
Full Name	PC - BEV_BC	PC - BEV_EE	PC - BEV_CRM	PC - BEV_DUR	PC - BEV_Ext	PC - BEV_REP	PC - BEV_EES		
Main strategy	Base Case	Higher Efficiency of the battery	Better CRM recycling	Higher durability of the battery	User profile changed: after 1st lifetime, range is limited	High repairability	1st life: like BC (repurposing)		
Description		Optimized BMS and thermal manangement	Substitution of weldings and adhesives by e.g. screws/ Substitution of composites by metals	Increased durability due to better cooling and dimensioning of cell and system	After EoL used e.g. for short ranged city car	Possibility to exchange e.g. a damaged module and thus to delay EoL	Use of battery for 2nd life application Caracteristics/parameters of 2nd life application not here		
Positive influence on:		Higher FU due to higher system efficiency Lower installed capacity	Better recyclability	FU by longer lifetime	Increased lifetime beyond 80% SoH Increased FU due to lifetime	Increased lifetime Increased FU due to lifetime	Increased FU due to lifetime (side effect): improved information for 2nd hand EV (increased trust from customers)		
			Higher volume and weight (e.g. switch from composites to	System efficiency		Higher weight			
Negative influence on:		A	Any options missing or not applicable?				System compatibility		
			Lower Inetime (recyclability vs. lifetime)	Energy density	2nd life)	replacements -> Lower energy density			
			Lower quantity of FU						

SUBTASK 4.2 - PRODUCT WEIGHT AND BILLS-OF-MATERIALS (BOMS)

Calculation of the BOM for the base cases

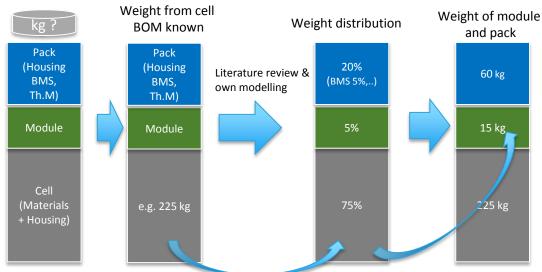


BARRIERS FOR BOM- SUBTASK 4.2 - PRODUCT WEIGHT AND BILLS-OF-MATERIALS (BOMS)

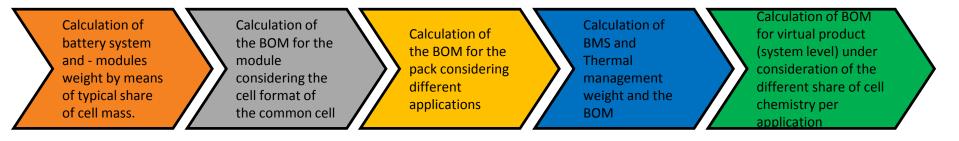
Product weight and Bills-of-Materials (BOMs) – Main barriers for defining the BOM for a BC

Calculation of BoM on battery system level for all base cases, but:

- Up to now, there is no representative product in the market, which could be used as a base case
- Products, even on cell level, differ regarding cell chemistry and cell format
- The heterogeneity of possible designs and products increases strongly when reaching the module and system level.



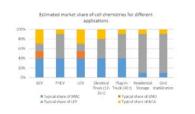
Heterogeneity of design



APPROACH BOM - SUBTASK 4.2 - PRODUCT WEIGHT AND BILLS-OF-MATERIALS (BOMS)

Summary of approach for defining the BOM for a base case

BOM on battery system level (top-down)



BOM ON CELL LEVEL- SUBTASK 4.2 - PRODUCT WEIGHT AND BILLS-OF-MATERIALS (BOMS)

Product weight and Bills-of-Materials (BOMs) – Cell level

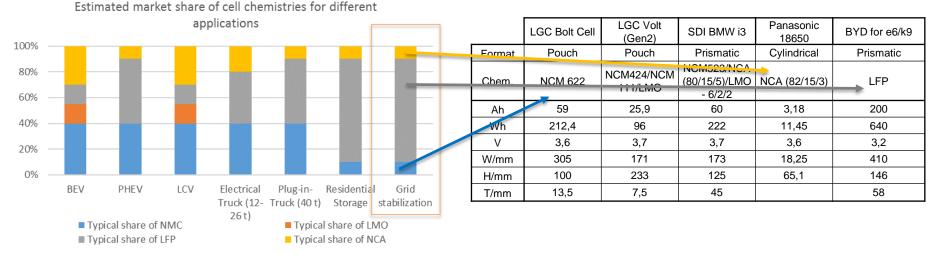
- 5 common cells on the market
- Considering to cover most cell chemistries and to cover all three cell formats
- Calculation of the BOM on cell level for different applications under consideration of the share of each cell chemistry

BOM for a virtual product for each base case

		LGC Bolt	LGC Volt (Gen2)	SDI BMW i3	Panasonic 18650	BYD 200Ah for e6/k9
	Format	Pouch				Prismatic
		NCM 622	NCM424/NCM111/LMO -	NCM523/NCA(80/15/5)/LM	NCA (82/15/3)	
	Chem.		(6/2/2 assumed)	O - (Share 6/2/2)		LFP
General	Ah	59	25,9	60	3,18	250
Information	Wh	212,4	96	222	11,45	875
monnation	v	3,6	3,7	3,7	3,6	3,2
	W/mm	305	171	173	18,25	410
	H/mm	100	233	125	65,1	146
	T/mm	13,5	7,5	45		58

			Material	per cell in g	Material	per cell in g	Material	per cell in g	Material	per cell in g	Material	per cell in
		Cathode active material		346	NCM424/NCM	1200,7	NCM523/NC	A 552	NCA (82/15/3	3) 16,46	LFP	1400
		Cathode active material 1	Fe	0	Fe	0	Fe	0	Fe	0,0	Fe	496
		Cathode active material 2	Co	39	Co	21	Co	22	Co	1,4	Co	0
		Cathode active material 3	Ni	117	Ni	29	Ni	75	Ni	7,5	Ni	0
		Cathode active material 4	Mn	37	Mn	64	Mn	223	Mn	0.0	Mn	0
		Cathode active material 5	AI	0	AI	0	AI	1	AI	0,2	AI	0
		Cathode active material 6	Li	46	Li	21	Li	42	Li	2.2	Li	62
	Kathode	Cathode active material 7	P	0	P	0	P	0	P	0,0	P	275
		Cathode active material 8	0	107	0	66	0	188	0	5.1	0	568
		Cathode conductor	Carbon	9	Carbon	10,6	Carbon	25.23	Carbon	0.22	boron modifie	
		Cathode binder	PVDF	9	PVDF	9,49	PVDF	23.43	PVDF	0.15	PVDF	66.67
		Cathode additives	ZrO2	4	ZrO2	5,45	ZrO2	20,40	ZrO2	0,10	ZrO2	00,07
		Cathode collector	Al foil	23	2102	29,2	Al foil	67,2	Al foil	1,62	Al foil	295.2
		Total cathode		390		250		668		18		1962
-			Graphite	199	Creative (MD		Graphite (MI		Graphit (MAG		Creatit	1000
		Anode active material			Graphite (MP						Graphit	
		Anode binder 1	SBR	3	AAS?	4,42	SBR	6,57	SBR	0,19	SBR	26,3
	Anode	Anode binder 2	CMC	3	CMC		CMC	6,57	CMC	0,19	CMC	26,3
		Anode collector	Cu foil	55	Cu foil	53,2	Cu foil	162,4	Cu foil	4,06	Cu foil	640,8
		Anode heatresistnt layer	AI		AI		AI	42,24	AI		AI	
		Total anode		261		163,62		462,19		16,08		1693,4
BOM Cell		Formulated electrolyte	Total	128	Total	76,9	Total	313,13	Total	4,7	Total	1100
level		Fluid	LiPF6	12	LiPF	9,8432	LiPF	40,08064	LiPF	0,6016	LiPF	140,8
10.401		Fluid	LiFSI	6	LiFSI		LiFSI		LiFSI		LiFSI	
Electrolyte	Electrolyte	Solvents	EC	26	EC	24,608	EC	100,2016	EC	1,504	EC	352
	Electionyte	Solvents	DMC	0	DMC	24,608	DMC	100,2016	DMC	1,504	DMC	352
		Solvents	EMC	72	EMC	17,687	EMC	72,0199	EMC	1,081	EMC	253
		Solvents	PC	12	PC		PC		PC		PC	
		Total electrolyte		128		76,7462		312,50374		4,6906		1097,8
		Separator	PE 10 µm+A	L 24	PE 10 µm+A	L-	PE 10 µm+A	λL -	PE 10 µm+A	.L -	PE 10 µm+A	.L -
		Separator	PP 15 µm +	Α-	PP 15 µm + /	4 18,0	PP 15 µm +	Α-	PP 15 µm +	Α-	PP 15 µm +	A-
	Separator	Separator	PP/PE/PP		PP/PE/PP		PP/PE/PP	61,96	PP/PE/PP		PP/PE/PP	215,04
		Separator	PE-AI2O3		PE-AI2O3		PE-AI2O3		PE-AI2O3	1,05	PE-AI2O3	
		Total separator		23,6		17,9832		61,96		1,05		215,04
_		Tab with film	Al Tab	5	Al Tab	5	Al Tab		Al Tab		Al Tab	
			Ni Tab	16	Ni Tab	16	Ni Tab		Ni Tab		Ni Tab	
		Exterior covering	PET/Ny/Al/P		PET/Ny/Al/PF19,21		PET/Ny/AI/PF-		PET/Ny/AI/PF-		PET/Ny/Al/P	P-
		Collector parts	Al leads		Al leads		Al leads 3,8		Al leads		Al leads	15
	Cell	Collector parts	Cu leads		Cu leads		Cu leads	10.4	Cu leads		Cu leads	45
	Packaging	Collector parts	Plastic faste	n	Cu leads Plastic fasteni-		Plastic fasten 16		Plastic fasten -		Plastic faster	
	r ackaging	Cover	Valve, rivet f		Valve, rivet te		Valve, rivet		Valve, rivet t		Valve, rivet t	
		Cover Case	Al	e -	Valve, rivet to Al	9-	Al	150.5	Al	e 1,00	Al	e 100 800
				-				/ -		- 5.02		
		Case	Ni plating Iro		Ni plating Iror		Ni plating Iro		Ni plating Iro		Ni plating Iro	
		Total cell packaging		38		40		293		8		980

BOM ON CELL LEVEL- SUBTASK 4.2 - PRODUCT WEIGHT AND BILLS-OF-MATERIALS (BOMS)


Product weight and Bills-of-Materials (BOMs) – Cell level

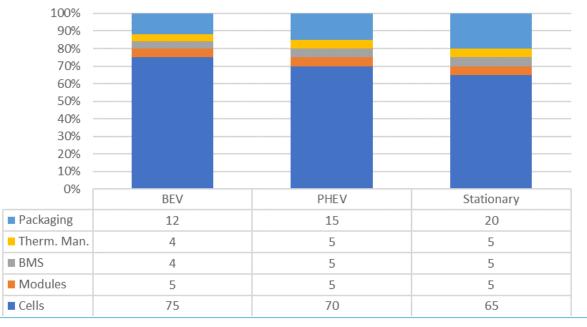
Calculation of BoM on battery system level for all base cases, but:

- Up to now, there is no representative product in the market, which could be used as a base case
- \rightarrow Calculation of a virtual product,
 - \rightarrow based on different cell chemistries and
 - \rightarrow their market share in the different applications
 - \rightarrow 5 common cells on the market

BOM Virtual product "Grid stabilisation"

= 10% BOM NCM + BOM 80% LFP + BOM 10% NCA

Same battery chemistries as in PEF: NMC (LiNixMnyCozO2), LiMn (LiMnO2), LFP (LiFePO4) Difference to PEF: NCA instead of LCO



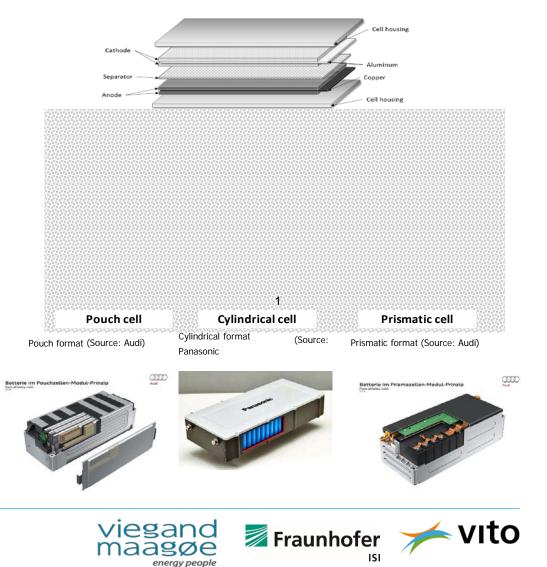
ISI

BOM ON SYSTEM LEVEL- SUBTASK 4.2 - PRODUCT WEIGHT AND BILLS-OF-MATERIALS (BOMS)

Module and System level – Definition of module and systems weight

- OEM are designing their own modules and systems
- Bottum-up approach not feasible
- Weight of the different systems components needed
- Thus considering the results of the literature review and the modelling the following weight distributions are defined for the applications:

Weight distribution of a virtual product for the applications



ISI

BOM ON MODULE LEVEL- SUBTASK 4.2 - PRODUCT WEIGHT AND BILLS-OF-MATERIALS (BOMS)

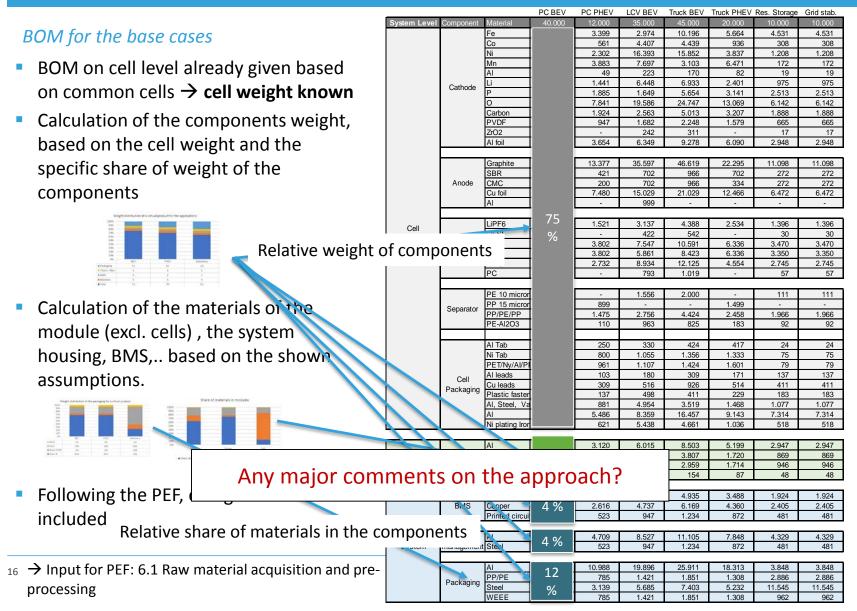
Product weight and Bills-of-Materials (BOMs) – Module and System level

- Definition of share of materials for modules
- Same for all applications
- Higher share of PP/PE for pouch compared to prism. due to necessity of cell frames
- High share of PP/PE for cylindrical due to cell holders, lid,...

BOM ON MODULE LEVEL- SUBTASK 4.2 - PRODUCT WEIGHT AND BILLS-OF-MATERIALS (BOMS)

Product weight and Bills-of-Materic

- Definition of share of materials for modules
- Same for all applications
- Higher share of PP/PE for pouch compared to prism. due to necessity of cell frames
- High share of PP/PE for cylindrical due to cell holders, lid,..

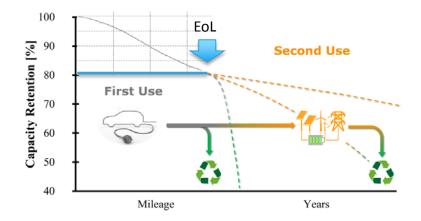

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Pouch Prism. Cyl. Share Al Share PP/PE Steel Electronics Pouch cell **Cylindrical cell** Prismatic cell Cylindrical format (Source: Pouch format (Source: Audi) Prismatic format (Source: Audi) Panasonic 0000 erie im Pouchzellen-Modu erie im Prismazellen-Modul-Prinzi

Share of materials in modules

SUBTASK 4.2 - PRODUCT WEIGHT AND BILLS-OF-MATERIALS (BOMS)

SUBTASK 4.2: MATERIALS FLOW AND COLLECTION EFFORT AT END-OF-LIFE

2nd life batteries

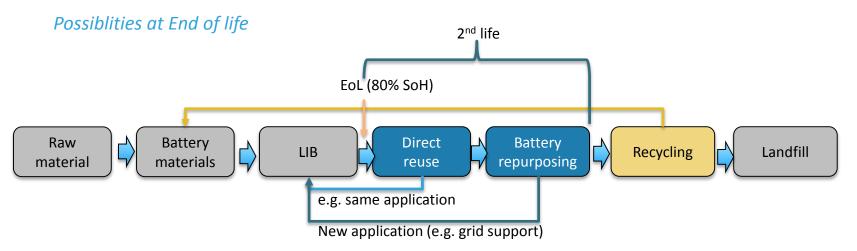


2ND LIFE BATTERIES- SUBTASK 4.2: MATERIALS FLOW AND COLLECTION EFFORT AT END-OF-LIFE

Second life applications

* from the PFF

- The performance of a battery cells and battery systems decreases in the course of time due to cycling, elevated temperature and time-calendar aging.
- The battery system of an EV usually reaches its End of Life when the remaining capacity falls below 80% SoHCap*. Automotive lithium-ion batteries offer the possibility of second use.
- Second life has the potential to reduce the environmental footprint.
- Second life is not foreseen in the PEF.



 Role of second life in the future: some expect very few batteries to have a second life, considering that prices for lithium-ion batteries will further drop in the future, while others expect most batteries to have a second life before recycling.

Source: Bobba, Silvia; Cusenza, Maria Anna; Podias, Andreas;; Messagie, Maarten; Mathieux, Fabrice; Di Persio, Franco et al. (2018): Sustainability Assessment of Second Life Application of Automotive Batteries (SASLAB). Luxembourg, 2018.

2ND LIFE BATTERIES- SUBTASK 4.2: MATERIALS FLOW AND COLLECTION EFFORT AT END-OF-LIFE

Source: Electric vehicles from life cycle and circular economy perspectives TERM 2018: Transport and Environment Reporting Mechanism (TERM) report

In terms of **repurposing** it can be distinguished between two different strategies:

1) Direct reuse: The battery system is not dismantled, tested and directly reused

2) Battery repurposing: The battery system is **dismantled at module level** and a new battery system is created by **repackaging**

2ND LIFE BATTERIES- SUBTASK 4.2: MATERIALS FLOW AND COLLECTION EFFORT AT END-OF-LIFE

Barriers of second life applications

- "Design for disassembly" is a relevant issue (e.g. connection of structural components) for 2nd use
- Automation to manage large amounts in an economical way → But the large variety of battery cells and battery system systems is a major challenge for automated dismantling
- Enable the storage of all important data from the operational history of the battery pack at individual battery cell level → Find suitable application for each cell, module or system
- The access to this data has to be enabled.
- The design of electronics for use in automobiles and in stationary applications would make it possible to move the battery to its second use without making any major concessions with regard to the required performance

SUBTASK 4.2 – MATERIALS FLOW AND COLLECTION EFFORT AT END-OF-LIFE - 2ND LIFE BATTERIES

Possibility to integrate 2nd life as a base case

■ EV batteries reaching EoL (80 % SoHcap) → repurposed for stationary application (ESS)

Application	EV Passenger Car	Stationary
Life-time of the installed system [year]	10	15
Battery system capacity [kWh]	40	32 (= 40 x 80%)
SoH @ EoL	80%	50%*
Quantity of functional units (QFU)	43 200	216 000

*Non-critical application

■ Main advantage: Quantity of FU increased by far → environmental impacts / QFU get improved

Few examples over the world

SUBTASK 4.2 – MATERIALS FLOW AND COLLECTION EFFORT AT END-OF-LIFE - 2ND LIFE BATTERIES

EoL of EV batteries

	Challenges	Possible solutions
Mechanical	Facilitate the operations of repair, remanufacture and repurpose	Use of physical features of the product (battery) that enable assembly/disassembly
Information	Quality of the modules, in particular: determination of the State of Health (SoH) of a used battery	Data storage and access to some data stored in the BMS to facilitate the determination of the State of Health (SoH)

The data stored during the life of the battery in the BMS may include the following parameters (at pack, battery pack and sub-pack levels):

- remaining capacity;
- battery temperature profile;
- overall kilometres (pack level);
- load and charge profile of each battery pack/module/cell

This might also increase information transparency and there the trust of customers in 2nd hand EV car

SUBTASK 4.2 – MATERIALS FLOW AND COLLECTION EFFORT AT END-OF-LIFE - 2ND LIFE BATTERIES

Two fold approach in theory possible

- Specific measures targeting 1st life EV battery systems to prepare / facilitate repurposing
- Specific measures targeting ESS battery systems manufactured with 2nd life battery components to push such a market.

Otherwise: such batteries systems might have to fulfill same requirements as ESS battery systems manufactured with brand new battery components

SUBTASK 4.2: MATERIALS FLOW AND COLLECTION EFFORT AT END-OF-LIFE

Recycling

RECYCLING- SUBTASK 4.2 – MATERIALS FLOW AND COLLECTION EFFORT AT END-OF-LIFE

Recycling

- Currently recycling processes focus on the recovery of the most valuable materials Ni and Co. Next to the high commodity prices for these materials, expect future shortage due to the increasing production of lithium-ion batteries
- **Recycling** of Li-ion batteries is **currently low**, due to:
 - very small battery volumes reaching end of life
 - poor knowledge of battery design;
 - a lack of proper pack and cell marking.
- Recycling processes for LIB are a combination of different individual processes:
- The **deactivation** can be done by discharging the entire battery system
- The pyrometallurgical process involves the recovery of metal from the electrode materials with the help of thermal processes
 - Bind heavy metals cobalt, copper and nickel in a melt,
 - other metal components are completely slagged and could be deposited in a landfill.
- The hydrometallurgical uses leaching and some preparation processes
- enables direct recovery of metals as cobalt, nickel, manganese and lithium and extraction of Al and Li from the slag of pyrometallurgical processes.

RECYCLING- SUBTASK 4.2 – MATERIALS FLOW AND COLLECTION EFFORT AT END-OF-LIFE

Recycling efficiency

- The efficiency of battery recycling is a combination of the collection rate and the recycling efficiency.
- The collection and recycling of batteries is regulated under the Directive 2006/66/EC, which is currently under revision (the PEF assumes 95% collection rate for emobility)
- The recycling efficiency differs according to the processes used.

	Combination of pyrom. & hydrom. processes - NMC and LFP [%]	Purely hydrometallurgical process - NMC only [%]	Purely hydrometallurgical process - LFP only [%]
Lithium	57	94	81
Nickel	95	97	NA
Manganese	0	~100	NA
Cobalt	94	~100	NA
Iron	0	NA	0
Phosphate	0	NA	0
Natural graphite	0	0	0

\rightarrow Input for PEF: 6.6 End of life

Please review and provide further input on the extra cost/energy required for lithium and natural graphite recycling in different processes, which will be useful in Task 6.

26 Source: Lebedeva, Natalia; Di Persio, Franco; Boon-Brett, Lois (2016): Lithium ion battery value chain and related opportunities for Europe. In: European Commission, Petten.

Next steps

Today

- Introduction of the data sources
- Warmly invited to review and provide input
- Spreadsheet will be shared after the meeting via email

After the stakeholder Meeting:

• We kindly ask for your feedback until: 20. January 2018

THANKS FOR YOUR ATTENTION

Tim Hettesheimer

Tim.Hettesheimer@isi.fraunhofer.de

Antoine Durand

Antoine.Durand@isi.fraunhofer.de

