

Paul Van Tichelen, Grietus Mulder

Intro

Objectives:

 potential policy criteria on sustainability to improve the whole life cycle product performance apart from the use phase performance

There are proposals for:

- Partial Open Battery Management System
- carbon footprint information
- Battery information
- Minimum battery pack design and construction requirements

Battery Management System with partially open data

- A BMS with partially open data has multiple benefits
 - consumer confidence
 - support life time warranty
 - Support repair
 - Support 2nd hand car sales trust, second life applications,
 - > Increased life time to reduce carbon footprint per FU

Battery Management System with partially open data

- State of health information
- Lifetime information
- General battery information
- BMS update possibility

Battery Management System with partially open data

- State of health information, e.g.:
 - (remaining) capacity, both in Ah and kWh
 - Remaining efficiency
 - Internal resistance in in $m\Omega$ for each module in a pack
- Lifetime information, e.g.:
 - calendar age including manufacturing date and start of service
 - energy throughput and capacity throughput;
 - number of normal charges and fast charges;
 - Battery use statistics like

Battery Management System with partially open data

Timing:

 The timing is one to one related to the standardization need, typically this will take 2 to 4 years to develop

Challenges:

- Development of the format for data access, and test protocols
- General uncertainty on SOH exists. No clear definition of SOH.
- Standardization of diagnostics connector on each BMS (OBD connector is not enough)
- Key challenges cover health & safety concerns, regulatory and technical ones
- Ensuring not to endanger the functional safety (esp. for firmware update)

Battery Information

- To allow repair, reuse, remanufacturing, repurposing, recycling
- To facilitate the End-of-Life (EoL) treatment for sustainable collection-sorting-recycling
- Linked to other policy proposals on
 - product performance
 - on BMS + some essential manufacturer dependent parameters.
- Could be used to promote responsible sourcing(?)

Battery Information

- The battery should carry at all levels (battery system, battery pack and module) a bar code, QR code or similar with an EAN number and serial number.
- This code provides data on a server which the manufacturer or supplier bears the responsibility of updating, e.g. such as the European Product Database for Energy Labelling (EPREL), in three levels:
 - Level 1: Public part (no access restriction)
 - Level 2: Data available to third party accredited professionals
 - Level 3: Compliance part (Information available for market surveillance authorities only)

Battery Information

- Data on a server
 - Level 1: Public part (no access restriction), e.g.:
 - General info
 - Lifetime info
 - Results test requirements
 - Carbon footprint info
 - Level 2: Data available to third party accredited professionals, e.g.:
 - Battery composition
 - Precise contents critical raw materials
 - Repair information
 - Dismantling information
 - Level 3: Compliance part (market surveillance authorities), e.g.:
 - Test reports proving compliance

Battery Information

Timing:

From 2022 onwards.

challenges:

- The proposed contents differ from other product groups so far in the European product database for energy labelling (EPREL)
- Requiring to detailed information on battery pack design might compromise or conflict intellectual property rights
- For battery marking several standards exist, updates probably needed
- For recycled content it relies on a credible traceability system throughout the value chain
- There might be standards needed for traceability of information

Carbon footprint

- battery requires far more energy compared to its storage capacity, typically 500 to 1000 times
- electricity takes a large share in the carbon footprint and this opens the opportunity to use low carbon electricity but also lignite and hard coal + there are also in manufacturing process EE optimizations
- help to promote "cleaner" BEV and might be a useful benchmarking between car manufacturers Klimabilanz von e-Golf versus Gr

Carbon footprint

- Carbon footprint(GWP) according to the Product Environmental Footprint Category Rules (PEFCR) and relative (gCO2eq/kWh):
 - to minimum FU(kWh) based on product warranty life
 - to the specified average life time (EN standards test cycles)
- In addition:
 - the calculated Primary Energy (MJ) and the share of electricity (MJ)
 - If no local electricity mix is used: a warranty that the low carbon electricity (if any) has been supplied based on hourly net metering (.. Might require ESS)

Carbon footprint

Timing:

- In minimum threshold ≠ recommended (too premature concept)
- For cells: as of 2021
- For packs and modules: as of 2022

challenges:

- First ever implementation & might benefit from learning. However some manufacturers already participated in the PEF pilot
- Issues on how to deal with electricity should be defined
- LCA in PEF is exhaustive method, might be simplified?
- note: only PEFC available for LiB for mobile applications!
- Market surveillance?

Design and construction requirements

- To support reusability/recyclability/recoverability
- simplify recycling at the end of life
- create a more competitive market and level of playing field
- support 2nd life applications
- create consumer confidence (second source supplier available, avoid a vendor lock in, back up solution in case of bankruptcy)

Design and construction requirements

- Introduce a new minimum recyclability index wherein:
 - Mandatory use of technical design features of the product (battery) that enable assembly/disassembly
 - Time lapsed digital photo record showing disassembly
 - Bonus/malus:
 - Standardized interfaces for hardware and software
 - Standardized thermal interface
 - Standardized dimensions and connections
 - Use of standard cell formats
 - Calculate the amount of material that can be recycled
 - Anything more?

Design and construction requirements

Timing:

- It is recommended to start developing a standard for two main applications before introduction (see next paragraph).
- It is also recommended to introduce this requirement first for vehicle applications due to the size of the market volume and they are familiar with the concept due to Directive 2005/64/EC.

Design and construction requirements

Challenges .. Needs a new standard:

- Connects to Directive 2005/64/EC on the type-approval of motor vehicles with regard to their usability, recyclability and recoverability (Annex I)
- could built on the ISO 22628:2002 + IEC/TR 62635:2012..?
- On the negative side is that EV batteries are a new market and setting such strong requirements could hamper innovation
- For niche markets, this might be a cost burden and there is not a benefit in the economy of scale for recycling?
- Car manufacturers have already a long track record in O&M tools and methods .., hence is this still needed?

INTERCONNECTION TASKS 6 AND 7

	Task 6/7 model option					
	long life	energy density	low carbon elec.	EE process opt.	low aux.	more recycling ?
performance policy requirements						
Minimum battery pack/system life time requirements	xxx					
Maximum auxiliary power consumption of the BMS					XX	
sustainability policy requirements						
Partial Open Battery Management						
System	xxx					
carbon footprint information		х	XXX	XXX		
Battery information	х					XX
Minimum battery pack design and						
construction requirements	xx					XXX

